Embedded eigenvalues and virtual poles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carleman Estimates and Absence of Embedded Eigenvalues

Let L = −∆− W be a Schrödinger operator with a potential W ∈ L n+1 2 (R), n ≥ 2. We prove that there is no positive eigenvalue. The main tool is an L − Lp′ Carleman type estimate, which implies that eigenfunctions to positive eigenvalues must be compactly supported. The Carleman estimate builds on delicate dispersive estimates established in [7]. We also consider extensions of the result to var...

متن کامل

Second Order Perturbation Theory for Embedded Eigenvalues

We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum and establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-Fierz Hamiltonia...

متن کامل

Perturbation of eigenvalues embedded at a threshold

Results are obtained on perturbation of eigenvalues and half-bound states (zero-resonances) embedded at a threshold. The results are obtained in a two-channel framework for small off-diagonal perturbations. The results are based on given asymptotic expansions of the component Hamiltonians.

متن کامل

Discrete and Embedded Eigenvalues for One-dimensional Schrödinger Operators

I present an example of a discrete Schrödinger operator that shows that it is possible to have embedded singular spectrum and, at the same time, discrete eigenvalues that approach the edges of the essential spectrum (much) faster than exponentially. This settles a conjecture of Simon (in the negative). The potential is of von Neumann-Wigner type, with careful navigation around a previously iden...

متن کامل

Monodromy Eigenvalues Are Induced by Poles of Zeta Functions – the Irreducible Curve Case

The ‘monodromy conjecture’ for a hypersurface singularity f predicts that a pole of its topological (or related) zeta function induces one of its monodromy eigenvalues. However, in general only a few eigenvalues are obtained this way. The second author proposed to consider zeta functions associated with the hypersurface and with a differential form and raised the following question. Can one fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1969

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1969.29.565